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The characteristic function of the work performed by an external time-dependent force on a Hamiltonian
quantum system is identified with the time-ordered correlation function of the exponentiated system’s Hamil-
tonian. A similar expression is obtained for the averaged exponential work which is related to the free energy
difference of equilibrium systems by the Jarzynski work theorem.
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Deep relations between nonequilibrium fluctuations and
thermal equilibrium properties of small systems have re-
cently been discovered and formulated in terms of so-called
fluctuation theorems �1,2�. These theorems are not only of
basic theoretical relevance but provide ground for experi-
mental investigations of small systems in physics, chemistry,
and biology �3�.

In this Rapid Communication we want to preclude a pos-
sible confusion about the notion of work in the context of
fluctuation theorems for quantum mechanical Hamiltonian
systems. To be precise, we consider a quantum system which
was in thermal contact with a heat bath at inverse tempera-
ture � until a time t0. Then the contact with the bath is
switched off and a classical force acts on the otherwise iso-
lated Hamiltonian system until the time tf according to a
prescribed protocol. We demonstrate that the exponential av-
erage of the total work performed on the system as well as
the characteristic function of this work are given by time-
ordered correlation functions of the exponentiated Hamil-
tonian rather than by expectation values of an operator rep-
resenting the work as a pretended observable.

For a system that evolves under the exclusive influence of
a time-dependent Hamiltonian H�t� from an initial thermal
equilibrium state,

��0� = Z�0�−1 exp�− �H�0�� , �1�

at time t0=0 until a final time t= tf, the work performed on
the system is a randomly distributed quantity w. Its statistical
properties follow from a probability density p�w� or, equiva-
lently, from the corresponding characteristic function G�u�,
which is defined as the Fourier transform of the probability
density, i.e.,

G�u� =� dweiuwp�w� . �2�

We will demonstrate that the characteristic function is given
by the following quantum correlation function:

G�u� = �eiuH�tf�e−iuH�0�	


 Tr eiuHH�tf�e−iuH�0���0�

= Tr eiuH�tf�U�tf�e−iuH�0���0�U+�tf�

= Tr eiuH�tf�U�tf�e−�iu+��H�0�U+�tf�/Z�0� , �3�

where “Tr” denotes the trace over the system’s Hilbert space
H, U�t� the unitary time evolution governed by the

Schrödinger equation i��U�t� /�t=H�t�U�t� with U�0�=1,
and HH�t�=U+�t�H�t�U�t� is the Hamiltonian in the Heisen-
berg picture. The third equality follows from the second line
by the cyclic invariance of the trace and the last line follows
with Eq. �1�.

The characteristic function has the form of a time-ordered
correlation function of the two operators exp�iuH�tf�� and
exp�−iuH�0��. We note that this correlation function in gen-
eral differs from the averaged exponential of the difference
of the Hamiltonians W=HH�tf�−H�0�, which sometimes is
referred to as the operator of work �4�. It is possible though
to formally rewrite the characteristic function in terms of the
difference between the Hamiltonians. In the second line
of Eq. �3� the product of the operators exp�iuHH�t�� and
exp�−iuH�0�� occurs in chronological order and may be
written as exp�iuHH�t��exp�−iuH�0��=T� exp�iuHH�t��
�exp�−iuH�0��. Under the protection of the time ordering
operator T� the usual rule for exponentials of commutative
quantities holds �5� to yield the following equivalent forms
of the characteristic function of work

G�u� = Tr T�eiu�HH�tf�−H�0����0�

= Tr T� exp�iu�
0

tf �HH�s�
�s

ds���0� . �4�

The second equality is a consequence of the known fact that
the total derivative of the Hamiltonian in the Heisenberg pic-
ture coincides with its partial time derivative.

The averaged exponentiated work �exp�−�w�	 is obtained
from the characteristic function by putting u= i�, cf. Eq. �2�.
Using the correlation function expression �3� together with
the canonical initial density matrix �1� we immediately
recover the Jarzynski equation in its known form �6�,

�e−�w	 =
Z�tf�
Z�0�

, �5�

where Z�tf�=Tr e−�H�tf� is the partition function of a hypo-
thetical system with Hamiltonian H�tf� in a Gibbs state at
inverse temperature �.

By replacing the quantum correlation function by the cor-
responding correlation function of a classical Hamiltonian
system the characteristic function of the work performed on
the classical system is obtained. Its inverse Fourier transform
yields the known classical expression for the probability den-
sity of work, cf. Ref. �7�,
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pcl�w� = Zcl
−1�0� � dz�0���w − �H„z�tf�,tf… − H„z�0�,0…��

� e−�H„z�0�,0…, �6�

where Zcl�0�=dz exp�−�H�z ,0�� denotes the classical par-
tition function, z= �p ,q� a point in phase space which serves
as the initial condition of the trajectory z�t� evolving accord-
ing to Hamilton’s equations of motion.

The fluctuation theorem has long been known for a sud-
den switch of the Hamiltonian of a classical system �8�. For
a quantum system with a Hamiltonian changing from H0 at
time t0=0− to H1 at tf =0+ the time-evolution operator be-
comes U�tf�=1. The characteristic function �3� then simpli-
fies to

G�u� = Tr eiuH1e−iuH0e−�H0/Z�0� �7�

and the Jarzynski equation �5� again follows with u= i�. In
all nontrivial cases, when the two Hamiltonians do not com-
mute, the averaged exponential of the difference operator
H1−H0 does not yield this result.

The proof of Eq. �3� essentially follows an argument
given by Kurchan �9�, see also Refs. �10–12�. It is based on
the elementary observation that two energy measurements
are required in order to determine the work performed on the
system by an external force. In the first measurement,
the energy is determined in the initial Gibbs state Z�0�−1

�exp�−�H�0��. The outcome of this measurement is one of
the eigenvalues en�0� of the Hamiltonian H�0� with the prob-
ability

pn = exp�− �en�0��/Z�0� . �8�

After the measurement, the system is found in the corre-
sponding eigenstate �n�0� of H�0� satisfying H�0��n�0�
=en�0��n�0�. This state evolves according to 	�t�
=U�t��n�0� until the second energy measurement is per-
formed at the time tf. It produces an eigenvalue em�tf� with
the probability

p�m,tf�n� = �„�m�tf��U�tf��n�0�…�2, �9�

where �·�·� denotes the scalar product of the Hilbert space H.
Here, em�tf� and �m�tf� are the eigenvalues and eigenfunc-
tions, respectively, of the Hamiltonian H�tf�. Hence, the en-
ergies em�tf� and en�0� are measured with the probability
p�m , t �n�pn such that the probability density of the work,
which is the difference of the measured energies, becomes

p�w� = �
n,m

��w − �em�tf� − en�0���p�m,tf�n�pn. �10�

One then finds for the characteristic function from the
definition �2�

G�u� = �
n,m

eiu�em�tf�−en�0��
„�m�tf��U�tf��n�0�…

� „�n�0��U+�tf��m�tf�…e−�en�0�/Z�0�

= �
n,m

„�m�tf��U�tf�e−iuH�0���0��n�0�…

� „�n�0��U+�tf�eiuH�tf��m�tf�…

= Tr U�tf�e−iuH�0���0�U+�tf�eiuH�tf�. �11�

In going to the last line, the sum over the complete set of
eigenstates ��m�t�� was written as the trace and the complete-
ness of the eigenstates �n�0� was used. By use of the cyclic
invariance of the trace the quantum correlation function ex-
pression �3� for the characteristic function is proved.

This expression for the characteristic function contains all
available statistical information about the work performed by
an external force on an isolated quantum system, such as the
averaged exponentiated work, cf. Eq. �5�. All moments of the
work follow from the derivatives of the characteristic
function.
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